login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304508
a(n) = 5*(3*n+1)*(9*n+8)/2 (n>=0).
2
20, 170, 455, 875, 1430, 2120, 2945, 3905, 5000, 6230, 7595, 9095, 10730, 12500, 14405, 16445, 18620, 20930, 23375, 25955, 28670, 31520, 34505, 37625, 40880, 44270, 47795, 51455, 55250, 59180, 63245, 67445, 71780, 76250, 80855, 85595, 90470, 95480, 100625, 105905, 111320
OFFSET
0,1
COMMENTS
The second Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
LINKS
Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
FORMULA
From Colin Barker, May 14 2018: (Start)
G.f.: 5*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(8 + 60*x + 27*x^2)/2.
a(n) = 5*A016777(n)*A017257(n)/2. (End)
MAPLE
seq((1/2)*(5*(3*n+1))*(9*n+8), n = 0 .. 40);
MATHEMATICA
Array[5 (3 # + 1) (9 # + 8)/2 &, 41, 0] (* or *)
LinearRecurrence[{3, -3, 1}, {20, 170, 455}, 41] (* or *)
CoefficientList[Series[5 (4 + 22 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
PROG
(PARI) a(n) = 5*(3*n+1)*(9*n+8)/2; \\ Altug Alkan, May 14 2018
(PARI) Vec(5*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 14 2018
STATUS
approved