OFFSET
0,1
COMMENTS
The second Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Colin Barker, May 14 2018: (Start)
G.f.: 5*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(8 + 60*x + 27*x^2)/2.
MAPLE
seq((1/2)*(5*(3*n+1))*(9*n+8), n = 0 .. 40);
MATHEMATICA
Array[5 (3 # + 1) (9 # + 8)/2 &, 41, 0] (* or *)
LinearRecurrence[{3, -3, 1}, {20, 170, 455}, 41] (* or *)
CoefficientList[Series[5 (4 + 22 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
PROG
(PARI) a(n) = 5*(3*n+1)*(9*n+8)/2; \\ Altug Alkan, May 14 2018
(PARI) Vec(5*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 14 2018
STATUS
approved