login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304311
Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.
5
1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
OFFSET
0,7
LINKS
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins
1;
1, 1;
1, 1, 1;
2, 3, 3, 2;
6, 11, 16, 11, 6;
21, 58, 98, 98, 58, 21;
112, 407, 879, 1087, 879, 407, 112;
853, 4306, 11260, 17578, 17578, 11260, 4306, 853;
11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
S(n, y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1, #p, 1+y^p[i])); s/n!}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i) )}
{my(A=InvEulerMT(vector(10, n, S(n, y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n, A[n], 1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018
CROSSREFS
Cf. A054921 (row sums), A001349 (1st column), A126100 (2nd column), A303831 (3rd column), A294783 (trees).
Sequence in context: A319442 A299772 A379151 * A175393 A338307 A153290
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 10 2018
STATUS
approved