login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304208
Number of partitions of n^3 into exactly n distinct parts.
2
1, 1, 3, 48, 1425, 66055, 4234086, 348907094, 35277846729, 4236771148454, 590133028697501, 93613602614249377, 16671698429605679621, 3295006292978246618505, 715884159450254458674982, 169624990695197593491828744, 43538384149387312404895504349
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^(n^3-n*(n+1)/2)] Product_{k=1..n} 1/(1-x^k).
EXAMPLE
n | Partitions of n^3 into exactly n distinct parts
--+-------------------------------------------------------------
1 | 1.
2 | 7+1 = 6+2 = 5+3.
3 | 24+ 2+1 = 23+ 3+1 = 22+ 4+1 = 22+ 3+2 = 21+ 5+1 = 21+ 4+2
| = 20+ 6+1 = 20+ 5+2 = 20+ 4+3 = 19+ 7+1 = 19+ 6+2 = 19+ 5+3
| = 18+ 8+1 = 18+ 7+2 = 18+ 6+3 = 18+ 5+4 = 17+ 9+1 = 17+ 8+2
| = 17+ 7+3 = 17+ 6+4 = 16+10+1 = 16+ 9+2 = 16+ 8+3 = 16+ 7+4
| = 16+ 6+5 = 15+11+1 = 15+10+2 = 15+ 9+3 = 15+ 8+4 = 15+ 7+5
| = 14+12+1 = 14+11+2 = 14+10+3 = 14+ 9+4 = 14+ 8+5 = 14+ 7+6
| = 13+12+2 = 13+11+3 = 13+10+4 = 13+ 9+5 = 13+ 8+6 = 12+11+4
| = 12+10+5 = 12+ 9+6 = 12+ 8+7 = 11+10+6 = 11+ 9+7 = 10+ 9+8.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+b(n-i, min(i, n-i)))
end:
a:= n-> b(n^3-n*(n+1)/2, n):
seq(a(n), n=0..20); # Alois P. Heinz, May 08 2018
MATHEMATICA
$RecursionLimit = 2000;
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1]+b[n-i, Min[i, n-i]]];
a[n_] := b[n^3 - n(n+1)/2, n];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
PROG
(PARI) {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(n^3-n*(n+1)/2)))), n^3-n*(n+1)/2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 08 2018
STATUS
approved