login
A303557
a(0) = 1; a(n) = 2^(n-1)*prime(n)#, where prime(n)# is the product of first n primes.
2
1, 2, 12, 120, 1680, 36960, 960960, 32672640, 1241560320, 57111774720, 3312482933760, 205373941893120, 15197671700090880, 1246209079407452160, 107173980829040885760, 10074354197929843261440, 1067881544980563385712640, 126010022307706479514091520, 15373222721540190500719165440
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the smallest number m having exactly n distinct prime divisors and exactly 2*n - 1 prime divisors counted with multiplicity.
FORMULA
a(n) = A011782(n)*A002110(n).
EXAMPLE
a(1) = 2^1;
a(2) = 2^2*3;
a(3) = 2^3*3*5;
a(4) = 2^4*3*5*7;
a(5) = 2^5*3*5*7*11, etc.
MATHEMATICA
Join[{1}, Table[2^(n - 1) Product[Prime[j], {j, n}], {n, 18}]]
CROSSREFS
Central terms of triangle A303555 (for n > 0).
Sequence in context: A215188 A236357 A226759 * A131815 A177774 A047793
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 26 2018
STATUS
approved