login
A303539
Number of ordered pairs (k, m) with 0 <= k <= m such that n - binomial(2*k,k) - binomial(2*m,m) can be written as the sum of two squares.
22
0, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 6, 4, 2, 2, 4, 4, 2, 2, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5, 5, 4, 7, 3, 3, 4, 6, 4, 2, 3, 5, 6, 3, 4, 5, 6, 5, 2, 5, 4, 5, 3, 2, 4, 5, 4, 3, 3, 3, 6, 7, 5, 5, 6, 10, 6, 3, 4, 8
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
a(n) > 0 for all n = 2..10^10.
See also A303540 and A303541 for related sequences.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 with 2 - binomial(2*0,0) - binomial(2*0,0) = 0^2 + 0^2.
a(3) = 2 with 3 - binomial(2*0,0) - binomial(2*0,0) = 0^2 + 1^2 and 3 - binomial(2*0,0) - binomial(2*1,1) = 0^2 + 0^2.
a(5) = 2 with 5 - binomial(2*0,0) - binomial(2*1,1) = 1^2 + 1^2 and 5 - binomial(2*1,1) - binomial(2*1,1) = 0^2 + 1^2.
MATHEMATICA
c[n_]:=c[n]=Binomial[2n, n];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; k=0; Label[bb]; If[c[k]>n, Goto[aa]]; Do[If[QQ[n-c[k]-c[j]], r=r+1], {j, 0, k}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 25 2018
STATUS
approved