login
A302690
a(n) is the smallest integer m such that m*n is a sum of two squares but not one.
3
2, 1, 6, 2, 1, 3, 14, 1, 2, 1, 22, 6, 1, 7, 3, 2, 1, 1, 38, 1, 42, 11, 46, 3, 2, 1, 6, 14, 1, 3, 62, 1, 66, 1, 7, 2, 1, 19, 3, 1, 1, 21, 86, 22, 1, 23, 94, 6, 2, 1, 3, 1, 1, 3, 11, 7, 114, 1, 118, 3, 1, 31, 14, 2, 1, 33, 134, 1, 138, 7, 142, 1, 1, 1, 6, 38, 154, 3, 158
OFFSET
1,1
COMMENTS
Previous name was: a(n) is the smallest integer m such that A002828(m*n) = 2.
All terms are squarefree.
Using the sum of two squares theorem it is easy to see that a(n) is either A363340(n) (if A363340(n)*n is not a square) or 2*A363340(n) (if A363340(n)*n is a square). - Peter Schorn, Jul 20 2023
FORMULA
a(n^2) = 2.
MAPLE
A302690 := proc(n)
local k ;
for k from 1 do
if A002828(k*n) = 2 then
return k;
end if;
end do:
end proc:
seq(A302690(n), n=1..100) ; # R. J. Mathar, Apr 16 2018
PROG
(PARI) a363340(n) = my(r=1); foreach(mattranspose(factor(n)), f, if(f[1]%4==3&&f[2]%2==1, r*=f[1])); r;
a(n) = my(p=a363340(n)); if(issquare(p*n), 2*p, p); \\ Peter Schorn, Jul 20 2023
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name corrected and more terms added by Michel Marcus, Apr 12 2018
Better name from Peter Schorn, Jul 20 2023
STATUS
approved