login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302183
Number of 3D walks of type abd.
0
1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
OFFSET
0,3
COMMENTS
See Dershowitz (2017) for precise definition.
LINKS
Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
FORMULA
From Mélika Tebni, Dec 03 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126869(k)*A001006(n-k).
Inverse binomial transform of A302184. (End)
PROG
(Python)
from math import comb as binomial
def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
def a(n):
return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024
KEYWORD
nonn,walk,changed
AUTHOR
N. J. A. Sloane, Apr 09 2018
EXTENSIONS
a(13)-a(26) from Mélika Tebni, Dec 03 2024
STATUS
approved