OFFSET
1,1
COMMENTS
An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).
MATHEMATICA
wt[n_]:=If[n===1, 0, Total[Cases[FactorInteger[n], {p_, k_}:>k*PrimePi[p]]]];
Select[Range[1000], SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 28 2018
STATUS
approved