login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301896
a(n) = product of total number of 0's and total number of 1's in binary expansions of 0, ..., n.
2
0, 1, 4, 8, 20, 35, 54, 72, 117, 165, 221, 280, 352, 425, 504, 576, 726, 875, 1036, 1200, 1386, 1575, 1776, 1976, 2214, 2451, 2700, 2944, 3216, 3479, 3750, 4000, 4455, 4897, 5355, 5808, 6300, 6789, 7296, 7800, 8364, 8925, 9504, 10080, 10695, 11305, 11931, 12544, 13260, 13965, 14688
OFFSET
0,3
FORMULA
a(n) = A059015(n)*A000788(n).
a(2^k-1) = 2^(k-2)*(2^k*(k - 2) + 4)*k.
EXAMPLE
+---+-----+---+---+---+---+----------+
| n | bin.|0's|sum|1's|sum| a(n) |
+---+-----+---+---+---+---+----------+
| 0 | 0 | 1 | 1 | 0 | 0 | 1*0 = 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1*1 = 1 |
| 2 | 10 | 1 | 2 | 1 | 2 | 2*2 = 4 |
| 3 | 11 | 0 | 2 | 2 | 4 | 2*4 = 8 |
| 4 | 100 | 2 | 4 | 1 | 5 | 4*5 = 20 |
| 5 | 101 | 1 | 5 | 2 | 7 | 5*7 = 35 |
| 6 | 110 | 1 | 6 | 2 | 9 | 6*9 = 54 |
+---+-----+---+---+---+---+----------+
bin. - n written in base 2;
0's - number of 0's in binary expansion of n;
1's - number of 1's in binary expansion of n;
sum - total number of 0's (or 1's) in binary expansions of 0, ..., n.
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], b(n-1)+
(l-> [add(1-i, i=l), add(i, i=l)])(Bits[Split](n)))
end:
a:= n-> (l-> l[1]*l[2])(b(n)):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 01 2023
MATHEMATICA
Accumulate[DigitCount[Range[0, 50], 2, 0]] Accumulate[DigitCount[Range[0, 50], 2, 1]]
PROG
(Python)
def A301896(n): return (2+(n+1)*(m:=(n+1).bit_length())-(1<<m)-(k:=sum(i.bit_count() for i in range(1, n+1))))*k # Chai Wah Wu, Mar 01 2023
(Python)
def A301896(n): return (a:=(n+1)*n.bit_count()+(sum((m:=1<<j)*((k:=n>>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1, n.bit_length()+1))>>1))*(2+(n+1)*(t:=(n+1).bit_length())-(1<<t)-a) # Chai Wah Wu, Nov 11 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ilya Gutkovskiy, Mar 28 2018
STATUS
approved