login
A301806
Numbers k such that the concatenation of 2^k - 1 and 2^(k - 1) - 1 is prime.
2
2, 3, 4, 7, 8, 12, 19, 22, 36, 46, 51, 67, 79, 215, 359, 394, 451, 1323, 2131, 3336, 3371, 6231, 19179, 39699, 51456, 56238, 69660, 75894, 79798, 92020, 174968, 176006, 181015, 285019, 331259, 360787, 366770
OFFSET
1,1
COMMENTS
541456 is a term. - Paolo Galliani, Feb 12 2020
EXAMPLE
2 is in the sequence because the concatenation of 3 and 1 is 31, which is prime.
3 is in the sequence because the concatenation of 7 and 3 is 73, which is prime.
5 is not in the sequence because the concatenation of 31 and 15 is 3115 = 5 * 7 * 89.
MATHEMATICA
Select[Range[10^3], PrimeQ@ FromDigits[Join @@ IntegerDigits@ {2^# - 1, 2^(# - 1) - 1}] &] (* Michael De Vlieger, Oct 17 2018 *)
PROG
(PFGW) ABC2 (2^$a-1)*10^len(2^($a-1)-1)+2^($a-1)-1 a: from x to y
(PARI) isok(n) = isprime(eval(concat(Str(2^n-1), Str(2^(n-1)-1)))); \\ Michel Marcus, Mar 27 2018
CROSSREFS
Cf. A000040, A000225, A298613 (associated primes).
Sequence in context: A051213 A340111 A211659 * A374057 A066847 A370121
KEYWORD
nonn,base,more
AUTHOR
Paolo Galliani, Mar 27 2018
EXTENSIONS
a(33) from Paolo Galliani, May 02 2018
a(34) from Paolo Galliani, Jun 14 2018
a(35) from Paolo Galliani, Jul 17 2018
a(36)-a(37) from Paolo Galliani, Aug 27 2018
STATUS
approved