login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301770
G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x^2*A(x)^2/(1 - x*A(x) - 2*x^2*A(x)^2/(1 - x*A(x) - 3*x^2*A(x)^2/(1 - ...)))), a continued fraction.
0
1, 1, 3, 11, 47, 217, 1061, 5399, 28337, 152381, 835823, 4660779, 26357111, 150872165, 872878665, 5098306063, 30034591105, 178326873753, 1066472979083, 6421120346267, 38907397325295, 237182461204097, 1454326514077709, 8968048205494983, 55608797571427793, 346716786105033077
OFFSET
0,3
FORMULA
a(n) = [x^n] (Sum_{k>=0} A000085(k)*x^k)^(n+1)/(n + 1).
EXAMPLE
G.f. A(x) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 217*x^5 + 1061*x^6 + 5399*x^7 + 28337*x^8 + ...
MATHEMATICA
Table[SeriesCoefficient[(1 + Sum[(I/Sqrt[2])^k * HermiteH[k, -I/Sqrt[2]] * x^k, {k, 1, n}])^(n+1)/(n+1), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Nov 05 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 26 2018
STATUS
approved