login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301499
Total sum of the hook lengths over all partitions of 2n-1 having exactly n parts.
2
1, 5, 22, 56, 139, 269, 554, 956, 1724, 2830, 4686, 7286, 11539, 17261, 26076, 38130, 55753, 79385, 113350, 158152, 220883, 303346, 415752, 562264, 759601, 1013728, 1350404, 1782342, 2346390, 3064045, 3992698, 5165042, 6666529, 8552739, 10944782, 13932362
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..12000 (terms 1..5000 from Alois P. Heinz)
FORMULA
a(n) = A180681(2*n-1,n).
a(n) ~ exp(Pi*sqrt(2*n/3)) * n / (8*sqrt(3)). - Vaclav Kotesovec, May 27 2018
MAPLE
f:= n-> (n-1)*n/2:
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
end:
a:= n-> (p-> p[1]*(2*n-1+f(n))+p[2])(b(n-1$2)):
seq(a(n), n=1..45);
MATHEMATICA
f[n_] := n(n-1)/2;
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
a[n_] := Function[p, p[[1]] (2n - 1 + f[n]) + p[[2]]][b[n - 1, n - 1]];
Array[a, 45] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A180681.
Sequence in context: A373110 A273677 A209116 * A033445 A208946 A245301
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 22 2018
STATUS
approved