login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300931
a(n) is the number of Klein four orbits of permutations generated by the operations of inverse permutation and conjugation by w_0 = [n, n-1, ..., 1].
1
1, 1, 2, 4, 13, 45, 230, 1388, 10558, 92126, 912908, 9998008, 119831996, 1557050972, 21795929320, 326923928048, 5230723155848, 88921965504136, 1600593971537552, 30411277553507360, 608225514852464848, 12772735603832679248, 281000182274281641056
OFFSET
0,3
LINKS
FORMULA
a(n) = (n! + (2*floor(n/2))!! + 2 + 2*Sum_{k=1..floor(n/2)} (Product_{j=0..k-1} binomial(n-2j,2))/k!)/4.
For n > 1, a(n) = (n! + (2*floor(n/2))!!)/4 + A001475(n-1). - Vaclav Kotesovec, May 19 2020
EXAMPLE
For n=3, the a(3)=4 orbits are {(1,2,3)}, {(1,3,2),(2,1,3)}, {(2,3,1),(3,1,2)}, and {(3,2,1)}.
MAPLE
a:= proc(n) option remember; `if`(n<6, [1$2, 2, 4, 13, 45][n+1],
((15*n^2+11*n-161)*a(n-1)-(19*n^2-100*n+65)*a(n-2)
-(30*n^3-87*n^2-81*n+266)*a(n-3)+68*(n-2)*(n-3)^2*a(n-4)
+(n-3)*(n-4)*(15*n^2-23*n-16)*a(n-5)-2*(17*n-33)*(n-3)*
(n-4)*(n-5)*a(n-6))/(15*n-38))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 30 2018
MATHEMATICA
Table[(n! + (2 Floor[n/2])!! + 2 + 2 Sum[Product[Binomial[n - 2 j, 2], {j, 0, k - 1}]/k!, {k, Floor[n/2]}])/4, {n, 22}] (* Michael De Vlieger, Mar 16 2018 *)
Table[(n! + (2*Floor[n/2])!!)/4 + I^(1 - n) * 2^((n - 3)/2) * HypergeometricU[(1 - n)/2, 3/2, -1/2], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2020 *)
CROSSREFS
Cf. A001475.
Sequence in context: A115600 A007858 A337797 * A286074 A153930 A284107
KEYWORD
nonn
AUTHOR
Sara Billey, Philippe Nadeau, Jordan Weaver, Jesse Rivera, Justin Shyi, Mar 15 2018
EXTENSIONS
a(19)-a(22) from Michael De Vlieger, Mar 16 2018
a(0)=1 prepended by Alois P. Heinz, Mar 30 2018
STATUS
approved