login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sqrt(Pi^2/8 - 1).
4

%I #24 Sep 30 2022 23:27:26

%S 4,8,3,4,2,5,8,4,7,6,0,8,6,7,9,0,9,9,0,1,3,7,3,2,6,3,7,0,6,3,9,3,1,7,

%T 0,2,2,3,2,8,0,1,7,2,7,6,6,5,1,4,5,9,9,4,8,6,9,3,4,5,7,2,4,6,1,7,4,7,

%U 3,1,3,8,1,6,4,0,8,0,1,6,6,1,5,0,2,8,7,2,5,3,3,3,6,4,5,5,2,0,4,5,1,0,0

%N Decimal expansion of sqrt(Pi^2/8 - 1).

%C Also the total harmonic distortion (THD) of a square wave, see formula (11) in the Blagouchine & Moreau link.

%H I. V. Blagouchine and E. Moreau, <a href="http://dx.doi.org/10.1109/TCOMM.2011.061511.100749">Analytic Method for the Computation of the Total Harmonic Distortion by the Cauchy Method of Residues.</a> IEEE Trans. Commun., vol. 59, no. 9, pp. 2478-2491, 2011. <a href="http://iblagouchine.perso.centrale-marseille.fr/IEEE-TCOM-2011-061511-100749.php">PDF file</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 0.4834258476086790990137326370639317022328017276651459...

%p evalf(sqrt((1/8)*Pi^2-1), 120)

%t RealDigits[Sqrt[Pi^2/8 - 1], 10, 120][[1]]

%o (PARI) default(realprecision, 120); sqrt(Pi^2/8-1)

%o (MATLAB) format long; sqrt(pi^2/8-1)

%Y Cf. A002388, A111003, A300713, A300714, A300727, A300731.

%K nonn,cons

%O 0,1

%A _Iaroslav V. Blagouchine_, Mar 11 2018