login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300664
Infinitary 3-abundant numbers: numbers n such that isigma(n) >= 3n, where isigma is the sum of infinitary divisors of n (A049417).
3
120, 840, 1080, 1320, 1512, 1560, 1848, 1890, 1920, 2040, 2184, 2280, 2376, 2688, 2760, 2856, 3000, 3192, 3480, 3720, 4440, 4920, 5160, 5640, 5880, 6360, 7080, 7320, 7560, 8040, 8520, 8760, 9240, 9480, 9720, 9960, 10680, 10920, 11640, 11880, 12120, 12360
OFFSET
1,1
COMMENTS
Analogous to 3-abundant numbers (A023197) with isigma (A049417) instead of sigma (A000203).
LINKS
EXAMPLE
840 is in the sequence since isigma(840) = 2880 > 3 * 840.
MATHEMATICA
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, #]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer ? Positive] := Module[{factors = First /@ FactorInteger[n], d = Divisors[n]}, d[[Flatten[ Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][#, Last[#]]] & /@ Transpose[ Last /@ ExponentList[#, factors] & /@ d]], _?(And @@ # &), {1}]]]]]; properinfinitarydivisorsum[k_] := Plus @@ InfinitaryDivisors[k] - k; Infinitary3AbundantNumberQ[k_] := If[properinfinitarydivisorsum[k] >= 2 k, True, False]; Select[Range[15000], Infinitary3AbundantNumberQ[#] &] (* after Ant King at A129656 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 10 2018
STATUS
approved