Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 15 2018 18:19:08
%S 1,1,3,8,22,59,160,429,1155,3105,8354,22474,60457,162636,437509,
%T 1176941,3166097,8517138,22912002,61635707,165806564,446037175,
%U 1199887133,3227823181,8683185454,23358686444,62837334885,169039070970,454732963567,1223279724439,3290751724917
%N Expansion of 1/(1 - x - Sum_{k>=2} prime(k-1)*x^k).
%C Invert transform of A008578.
%H Alois P. Heinz, <a href="/A300662/b300662.txt">Table of n, a(n) for n = 0..2327</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f.: 1/(1 - Sum_{k>=1} A008578(k)*x^k).
%p a:= proc(n) option remember; `if`(n=0, 1, add(
%p `if`(j=1, 1, ithprime(j-1))*a(n-j), j=1..n))
%p end:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Mar 10 2018
%t nmax = 30; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
%t p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]
%Y Cf. A000040, A008578, A023626, A030011, A030012, A030013, A030014, A030015, A030016, A030017, A030018, A292744, A300632.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Mar 10 2018