login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300632
Expansion of e.g.f. exp(x + Sum_{k>=2} prime(k-1)*x^k/k!).
8
1, 1, 3, 10, 42, 203, 1119, 6839, 45895, 334142, 2619052, 21946647, 195537777, 1843619725, 18321431155, 191242913022, 2090436115146, 23864653888881, 283865214366771, 3510656353388517, 45056394441558593, 599057016471131604, 8238406603745152620, 117020080948487107289
OFFSET
0,3
COMMENTS
Exponential transform of A008578.
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(Sum_{k>=1} A008578(k)*x^k/k!).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 42*x^4/4! + 203*x^5/5! + 1119*x^6/6! + 6839*x^7/7! + ..
MAPLE
a:= proc(n) option remember; (p-> `if`(n=0, 1, add(a(n-j)*p(j)*
binomial(n-1, j-1), j=1..n)))(t-> `if`(t=1, 1, ithprime(t-1)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 10 2018
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[x + Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 10 2018
STATUS
approved