login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300546
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 37, 71, 37, 3, 5, 129, 450, 450, 129, 5, 8, 450, 2879, 5232, 2879, 450, 8, 13, 1568, 18365, 61561, 61561, 18365, 1568, 13, 21, 5464, 117146, 724165, 1338834, 724165, 117146, 5464, 21, 34, 19041, 747252, 8514930, 29114990
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1..........2............3..............5.................8
..1.....3......11.........37..........129............450..............1568
..1....11......71........450.........2879..........18365............117146
..2....37.....450.......5232........61561.........724165...........8514930
..3...129....2879......61561......1338834.......29114990.........632777378
..5...450...18365.....724165.....29114990.....1170734982.......47042626155
..8..1568..117146....8514930....632777378....47042626155.....3494400946777
.13..5464..747252..100122064..13752553340..1890308500802...259582877324570
.21.19041.4766519.1177281510.298894998879.75958861124241.19283328543117575
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>10
k=4: [order 41] for n>42
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..1..1..0. .0..0..1..0. .0..0..1..0. .0..0..0..1
..0..1..0..0. .0..1..1..0. .0..1..0..1. .1..1..0..1. .1..1..0..1
..1..1..0..1. .1..0..0..0. .1..0..1..0. .0..1..1..1. .1..0..1..1
..0..0..1..1. .0..1..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..1
..0..0..1..1. .0..1..1..0. .0..1..1..1. .1..1..1..1. .1..1..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A232031(n-1).
Sequence in context: A317458 A301615 A180771 * A300973 A300930 A109528
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 08 2018
STATUS
approved