login
A300300
Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.
13
1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
OFFSET
0,4
LINKS
FORMULA
Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.
EXAMPLE
The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
`if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..45); # Alois P. Heinz, Mar 02 2018
MATHEMATICA
nn=50;
ser=Product[1/(1-x^n)^PartitionsQ[n], {n, 1, nn, 2}];
Table[SeriesCoefficient[ser, {x, 0, n}], {n, 0, nn}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 02 2018
STATUS
approved