login
A300055
Coefficients in expansion of (E_4^3/E_6^2)^(1/2).
18
1, 864, 476928, 254399616, 136313874432, 72985679394624, 39084426149704704, 20929208813297429760, 11207444175842517172224, 6001488285356611750823136, 3213747681163891383409648128, 1720934927015053152217599326592
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A299413.
a(n) ~ 16 * Pi^3 * exp(2*Pi*n) / (sqrt(3) * Gamma(1/4)^4). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
CROSSREFS
(E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), this sequence (k=144), A289209 (k=288).
Cf. A004009 (E_4), A013973 (E_6), A299413.
Sequence in context: A064321 A210408 A299413 * A082243 A308131 A114497
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 23 2018
STATUS
approved