Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 May 12 2020 20:59:27
%S 0,1,0,3,4,1,0,9,24,22,8,1,0,27,108,171,136,57,12,1,0,81,432,972,1200,
%T 886,400,108,16,1,0,243,1620,4725,7920,8430,5944,2810,880,175,20,1,0,
%U 729,5832,20898,44280,61695,59472,40636,19824,6855,1640,258,24,1
%N Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.
%C T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
%C Row sums gives A001018.
%D V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
%H Michael De Vlieger, <a href="/A299989/b299989.txt">Table of n, a(n) for n = 0..10301</a> (rows 0 <= n <= 100, flattened.)
%H Ryo Hanaki, <a href="https://projecteuclid.org/euclid.ojm/1285334478">Pseudo diagrams of knots, links and spatial graphs</a>, Osaka Journal of Mathematics, Vol. 47 (2010), 863-883.
%H Louis H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology, Vol. 26 (1987), 395-407.
%H Carolina Medina, Jorge Ramírez-Alfonsín and Gelasio Salazar, <a href="https://arxiv.org/abs/1710.06470">On the number of unknot diagrams</a>, arXiv:1710.06470 [math.CO], 2017.
%H Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018.
%H Franck Ramaharo, <a href="https://arxiv.org/abs/1805.10569">A generating polynomial for the pretzel knot</a>, arXiv:1805.10680 [math.CO], 2018.
%H Franck Ramaharo, <a href="https://arxiv.org/abs/2002.06672">A bracket polynomial for 2-tangle shadows</a>, arXiv:2002.06672 [math.CO], 2020.
%F T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
%F T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
%F T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
%F T(n,1) = A000244(n).
%F T(n,2) = A120908(n).
%F T(n,n+1) = A069835(n).
%F T(n,2*n-1) = A139272(n).
%F T(n,2*n) = A008586(n).
%F T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
%F G.f.: x/(1 - y*(x^2 + 4*x + 3)).
%e The triangle T(n, k) begins:
%e n\k 0 1 2 3 4 5 6 7 8 9
%e 0: 0 1
%e 1: 0 3 4 1
%e 2: 0 9 24 22 8 1
%e 3: 0 27 108 171 136 57 12 1
%e 4: 0 81 432 972 1200 886 400 108 16 1
%t row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* _Jean-François Alcover_, Mar 16 2018 *)
%o (Maxima)
%o g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
%o a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
%o T : []$
%o for i:1 thru 11 do
%o T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
%o T;
%o (PARI) T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
%o tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Mar 03 2018
%Y Row 2: row 5 of A158454.
%Y Row 3: row 2 of A220665.
%Y Row 4: row 5 of A219234.
%K tabf,easy,nonn
%O 0,4
%A _Franck Maminirina Ramaharo_, Feb 26 2018
%E Typo in row 6 corrected by _Jean-François Alcover_, Mar 16 2018