login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299853
G.f. C(x) satisfies C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 72*x.
3
1, 12, 12, -24, 96, -504, 3072, -20592, 147456, -1108536, 8650752, -69535440, 572522496, -4808643120, 41070624768, -355839590880, 3121367482368, -27676994061240, 247750893502464, -2236495344667920, 20341652308623360, -186268112277342480, 1716095758400225280, -15898314689790251040, 148031912376784650240, -1384743209480730865584, 13008588976864521879552
OFFSET
0,2
COMMENTS
The functions C = C(x) and S = S(x) such that C(x)^(1/2) - S(x)^(1/2) = 1 may be generated by the following method.
(Start) Set C = 1, S = x^2, then iterate
C = 1 + Integral S'*sqrt(C/S) dx and
S = Integral C'*sqrt(S/C) dx.
The limit will converge to C = C(x) and S = S(x) defined by A299853 and A299854. (End)
Note that different seed values of C and S yield different solutions; see A299430/A299431 and A299432/A299433 for other functions that satisfy C(x)^(1/2) - S(x)^(1/2) = 1.
FORMULA
The functions C = C(x) and S = S(x) satisfy:
(1a) sqrt(C) - sqrt(S) = 1.
(1b) C'*sqrt(S) = S'*sqrt(C) = 72*x.
(1c) C' = 72*x/sqrt(S).
(1d) S' = 72*x/sqrt(C).
Integrals.
(2a) C = 1 + Integral 72*x/sqrt(S) dx.
(2b) S = Integral 72*x/sqrt(C) dx.
(2c) C = 1 + Integral S'*sqrt(C/S) dx.
(2d) S = Integral C'*sqrt(S/C) dx.
Exponentials.
(3a) sqrt(C) = exp( Integral 36*x/(C*sqrt(S)) dx ).
(3b) sqrt(S) = 6*x*exp( Integral 36*x/(S*sqrt(C)) - 1/x dx ).
(3c) C - S = exp( Integral 72*x/(C*sqrt(S) + S*sqrt(C)) dx ).
(3d) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
Functional equations.
(4a) C = 1/3 - 36*x^2 + (2/3)*C^(3/2).
(4b) S = 36*x^2 - (2/3)*S^(3/2).
Explicit solutions.
(5a) C(x) = 1 + Sum_{n>=1} 2*(-4)^n*binomial(3*n/2,n)/((3*n-2)*(3*n-4)) * x^n.
(5b) S(x) = 36*x^2 + Sum_{n>=3} 18*(-4)^n*(3*n-3)*binomial(3*n/2-2,n)/((3*n-4)*(3*n-6)) * x^n.
(5c) sqrt(C(x)) = 1 + Sum_{n>=1} -(-4)^n * binomial(3*n/2,n)/(3*n-2) * x^n.
Formulas for terms.
a(n) = 2*(-4)^n * binomial(3*n/2,n) / ((3*n-2)*(3*n-4)) for n>=1, with a(0) = 1.
EXAMPLE
G.f.: C(x) = 1 + 12*x + 12*x^2 - 24*x^3 + 96*x^4 - 504*x^5 + 3072*x^6 - 20592*x^7 + 147456*x^8 - 1108536*x^9 + 8650752*x^10 + ...
RELATED SERIES.
S(x) = 36*x^2 - 144*x^3 + 864*x^4 - 6048*x^5 + 46080*x^6 - 370656*x^7 + 3096576*x^8 - 26604864*x^9 + 233570304*x^10 + ...
C(x)^(1/2) = 1 + 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
sqrt(S(x)) = 6*x - 12*x^2 + 60*x^3 - 384*x^4 + 2772*x^5 - 21504*x^6 + 175032*x^7 - 1474560*x^8 + 12748164*x^9 - 112459776*x^10 + ...
where C(x)^(1/2) - S(x)^(1/2) = 1
and C'*sqrt(S) = S'*sqrt(C) = 72*x.
PROG
(PARI) {a(n) = my(C=1, S=x^2); for(i=0, n, C = 1 + intformal( 72*x/sqrt(S +x^3*O(x^n)) ); S = intformal( 72*x/sqrt(C) ) ); polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, 2*(-4)^n * binomial(3*n/2, n) / ((3*n-2)*(3*n-4)) )}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A022346 A174020 A173549 * A251643 A346531 A070710
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 20 2018
STATUS
approved