login
A299764
Number of special products of factorizations of n into factors > 1.
0
1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 18, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 32, 6, 6, 6, 44, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 72, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 51, 6, 22, 2, 16, 6, 22, 2, 104, 2, 6, 16, 16, 6
OFFSET
1,2
COMMENTS
A special product of a factorization f is a number n > 0 such that exactly one submultiset of f has product n.
EXAMPLE
The a(12) = 16 special subset-products:
1<=(12), 12<=(12),
1<=(2*6), 2<=(2*6), 6<=(2*6), 12<=(2*6),
1<=(3*4), 3<=(3*4), 4<=(3*4), 12<=(3*4),
1<=(2*2*3), 2<=(2*2*3), 3<=(2*2*3), 4<=(2*2*3), 6<=(2*2*3), 12<=(2*2*3).
The a(16) = 18 special subset-products:
1<=(16), 16<=(16),
1<=(4*4), 4<=(4*4), 16<=(4*4),
1<=(2*8), 2<=(2*8), 8<=(2*8), 16<=(2*8),
1<=(2*2*4), 2<=(2*2*4), 8<=(2*2*4), 16<=(2*2*4),
1<=(2*2*2*2), 2<=(2*2*2*2), 4<=(2*2*2*2), 8<=(2*2*2*2), 16<=(2*2*2*2).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
sppr[y_]:=Join@@Select[GatherBy[Union[Subsets[y]], Times@@#&], Length[#]===1&];
Table[Length[Join@@sppr/@facs[n]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 08 2018
STATUS
approved