%I #54 Mar 11 2018 05:09:58
%S 1,2,-2,6,-3,-3,8,0,-8,0,20,-5,-5,-5,-5,12,6,-6,-12,-6,6,42,-7,-7,-7,
%T -7,-7,-7,32,0,0,0,-32,0,0,0,54,0,0,-27,0,0,-27,0,0,40,10,-10,10,-10,
%U -40,-10,10,-10,10,110,-11,-11,-11,-11,-11,-11,-11,-11,-11,-11
%N Triangle read by rows T(n,k) giving coefficients in expansion of Product_{j=1..n} (1-x^j)^2 mod x^(n+1)-1.
%H Seiichi Manyama, <a href="/A298983/b298983.txt">Rows n = 0..139, flattened</a>
%F T(n,k) = (n+1) * Sum_{d | gcd(n+1,n+1-k)} d*mu((n+1)/d) for 0 <= k <= n.
%F So T(n,0) = A002618(n+1) and T(n,n) = A055615(n+1).
%e Triangle begins:
%e k 0 1 2 3 4 5 6
%e n
%e 0 1;
%e 1 2, -2;
%e 2 6, -3, -3;
%e 3 8, 0, -8, 0;
%e 4 20, -5, -5, -5, -5;
%e 5 12, 6, -6, -12, -6, 6;
%e 6 42, -7, -7, -7, -7, -7, -7;
%Y Cf. A002618, A055615, A282634, A300628.
%K sign,tabl
%O 0,2
%A _Seiichi Manyama_, Mar 10 2018