login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298933
Expansion of f(x, x^2) * f(x, x^3) * f(x^2, x^4) in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 2, 3, 4, 4, 6, 5, 6, 6, 4, 8, 6, 9, 6, 6, 12, 8, 12, 8, 8, 9, 8, 12, 6, 8, 14, 12, 12, 8, 12, 13, 12, 18, 8, 8, 12, 16, 14, 12, 12, 16, 12, 13, 14, 6, 20, 16, 18, 8, 10, 18, 16, 20, 12, 16, 16, 15, 20, 12, 18, 24, 14, 18, 8, 16, 18, 16, 22, 12, 12, 20, 24
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x) * phi(-x^3) * phi(-x^6) / chi(-x^2)^3 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q^2)^2 * eta(q^3)^2 * eta(q^4) * eta(q^6) / (eta(q)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [2, 0, 0, -1, 2, -3, 2, -1, 0, 0, 2, -3, ...].
a(n) = A298932(2*n).
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 4*x^3 + 4*x^4 + 6*x^5 + 5*x^6 + 6*x^7 + 6*x^8 + ...
G.f. = q + 2*q^5 + 3*q^9 + 4*q^13 + 4*q^17 + 6*q^21 + 5*q^25 + 6*q^29 + ...
MAPLE
N:= 100:
S:= series(JacobiTheta3(0, x)*JacobiTheta4(0, x^3)*JacobiTheta4(0, x^6)*expand(QDifferenceEquations:-QPochhammer(-x^2, x^2, floor(N/2)))^3, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jan 29 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2]^3, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^6 + A) / (eta(x + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
Cf. A298932.
Sequence in context: A064558 A178031 A008328 * A365851 A091860 A333995
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2018
STATUS
approved