login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298609
Polynomials related to the Motzkin sums for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.
1
0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 9, 0, 3, 0, 8, 0, 24, 0, 4, 0, 0, 50, 0, 50, 0, 5, 0, 30, 0, 180, 0, 90, 0, 6, 0, 0, 245, 0, 490, 0, 147, 0, 7, 0, 112, 0, 1120, 0, 1120, 0, 224, 0, 8, 0, 0, 1134, 0, 3780, 0, 2268, 0, 324, 0, 9, 0, 420, 0, 6300, 0, 10500, 0, 4200, 0, 450, 0, 10, 0
OFFSET
0,7
COMMENTS
The polynomials evaluated at x = 1 give the analog of the Motzkin sums for Coxeter type D (see A290380 (with a shift in the indexing)).
FORMULA
A298608(n,k) = A109187(n,k) + T(n,k).
The polynomials are defined by p(0, x) = p(1, x) = 0 and for n >= 2 by p(n, x) = G(n - 1, -n, -x/2)*(n - 1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
p(n, x) = Catalan(n)*(n-1)*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4) for n >= 2.
EXAMPLE
The first few polynomials are:
p0(x) = 0;
p1(x) = 0;
p2(x) = x;
p3(x) = 2 + 2*x^2;
p4(x) = 9*x + 3*x^3;
p5(x) = 8 + 24*x^2 + 4*x^4;
p6(x) = 50*x + 50*x^3 + 5*x^5;
p7(x) = 30 + 180*x^2 + 90*x^4 + 6*x^6;
p8(x) = 245*x + 490*x^3 + 147*x^5 + 7*x^7;
p9(x) = 112 + 1120*x^2 + 1120*x^4 + 224*x^6 + 8*x^8;
The triangle of coefficients extended by the main diagonal with zeros starts:
[0][ 0]
[1][ 0, 0]
[2][ 0, 1, 0]
[3][ 2, 0, 2, 0]
[4][ 0, 9, 0, 3, 0]
[5][ 8, 0, 24, 0, 4, 0]
[6][ 0, 50, 0, 50, 0, 5, 0]
[7][ 30, 0, 180, 0, 90, 0, 6, 0]
[8][ 0, 245, 0, 490, 0, 147, 0, 7, 0]
[9][112, 0, 1120, 0, 1120, 0, 224, 0, 8, 0]
MAPLE
A298609Poly := n -> `if`(n<=1, 0, binomial(2*n, n)*((n-1)/(n+1))*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4)):
A298609Row := n -> if n=0 then 0 elif n=1 then 0, 0 else op(PolynomialTools:-CoefficientList(simplify(A298609Poly(n)), x)), 0 fi:
seq(A298609Row(n), n=0..11);
MATHEMATICA
P298609[n_] := If[n <= 1, 0, GegenbauerC[n - 1, -n, -x/2] (n - 1)/n];
Flatten[ Join[ {{0}, {0, 0}},
Table[ Join[ CoefficientList[ P298609[n], x], {0}], {n, 2, 10}]]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 23 2018
STATUS
approved