login
A298571
Number of nX4 0..1 arrays with every element equal to 0, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1
1, 8, 2, 3, 41, 38, 70, 374, 664, 1327, 4668, 10974, 24373, 70732, 181600, 434550, 1167179, 3047993, 7603212, 19855359, 51764205, 131757754, 340961976, 885345035, 2273546860, 5869335895, 15197343665, 39165876002, 101074648923, 261308007058
OFFSET
1,2
COMMENTS
Column 4 of A298575.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +26*a(n-3) -16*a(n-4) -20*a(n-5) -278*a(n-6) +92*a(n-7) +146*a(n-8) +1603*a(n-9) -188*a(n-10) -487*a(n-11) -5508*a(n-12) -255*a(n-13) +587*a(n-14) +11843*a(n-15) +2118*a(n-16) +867*a(n-17) -16392*a(n-18) -4788*a(n-19) -3812*a(n-20) +14685*a(n-21) +5603*a(n-22) +5402*a(n-23) -8344*a(n-24) -3708*a(n-25) -4188*a(n-26) +2776*a(n-27) +1216*a(n-28) +1696*a(n-29) -384*a(n-30) -128*a(n-31) -256*a(n-32) for n>33
EXAMPLE
Some solutions for n=5
..0..1..1..1. .0..1..1..0. .0..0..1..1. .0..1..0..0. .0..0..1..0
..1..1..1..0. .1..1..1..1. .1..0..1..0. .1..1..0..1. .1..0..1..1
..1..1..1..1. .1..1..1..1. .0..0..1..1. .1..1..0..0. .1..1..1..1
..1..1..0..0. .1..0..1..1. .0..0..1..1. .1..1..0..0. .1..1..1..1
..0..1..0..1. .0..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..0
CROSSREFS
Cf. A298575.
Sequence in context: A247684 A248304 A248303 * A096257 A333206 A357465
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 22 2018
STATUS
approved