login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298547
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 17, 17, 2, 3, 61, 109, 61, 3, 5, 216, 588, 588, 216, 5, 8, 793, 3276, 4771, 3276, 793, 8, 13, 2907, 18500, 41762, 41762, 18500, 2907, 13, 21, 10622, 104034, 367315, 575754, 367315, 104034, 10622, 21, 34, 38809, 585134, 3215618, 7967553
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1.........2...........3.............5...............8
..1.....4......17........61.........216...........793............2907
..1....17.....109.......588........3276.........18500..........104034
..2....61.....588......4771.......41762........367315.........3215618
..3...216....3276.....41762......575754.......7967553.......109775311
..5...793...18500....367315.....7967553.....173576070......3761355239
..8..2907..104034...3215618...109775311....3761355239....128132389259
.13.10622..585134..28178880..1514903717...81677753297...4376310739604
.21.38809.3291766.246983338.20908710812.1774108927621.149522986489383
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
k=3: [order 12] for n>13
k=4: [order 36] for n>39
EXAMPLE
Some solutions for n=6 k=4
..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..1..0..0. .0..1..0..0. .0..0..0..1. .0..1..0..0. .0..1..1..0
..1..1..0..1. .1..0..0..1. .1..1..0..1. .0..0..0..1. .0..0..0..0
..0..1..1..0. .0..1..1..0. .0..0..1..0. .1..1..1..0. .0..1..1..1
..1..0..0..1. .0..0..1..0. .1..1..0..0. .1..1..0..1. .0..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297917.
Sequence in context: A298653 A299607 A297923 * A298337 A299398 A299228
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 21 2018
STATUS
approved