login
A298037
Partial sums of A298036.
2
1, 13, 25, 61, 85, 145, 181, 265, 313, 421, 481, 613, 685, 841, 925, 1105, 1201, 1405, 1513, 1741, 1861, 2113, 2245, 2521, 2665, 2965, 3121, 3445, 3613, 3961, 4141, 4513, 4705, 5101, 5305, 5725, 5941, 6385, 6613, 7081, 7321, 7813, 8065, 8581, 8845, 9385, 9661
OFFSET
0,2
FORMULA
From Joerg Arndt, Aug 23 2020: (Start)
G.f.: (1 + 12*x + 10*x^2 + 12*x^3 + x^4)/((1 - x^2)^2*(1-x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n)= A298036(n) + a(n-1). - Hakan Icoz, Aug 23 2020
EXAMPLE
a(1) = 12 + 1 = 13
a(2) = 12 + 13 = 25
a(3) = 36 + 25 = 61
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 13, 25, 61, 85}, 100] (* Paolo Xausa, Jul 20 2024 *)
CROSSREFS
Cf. A298036.
Sequence in context: A005696 A147145 A283174 * A283255 A322662 A151776
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 22 2018
EXTENSIONS
a(7)-a(50) from Hakan Icoz, Aug 22 2020
STATUS
approved