%I #4 Jan 05 2018 18:57:21
%S 1,31,206,1181,10639,90727,720785,5909241,48847911,400405024,
%T 3283795151,26976077016,221488948284,1818161928153,14927447103567,
%U 122557391321622,1006185363901356,8260764995494461,67821099419523837,556811248211302092
%N Number of nX4 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 2, 3 or 4 neighboring 1s.
%C Column 4 of A297762.
%H R. H. Hardin, <a href="/A297758/b297758.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +12*a(n-2) +129*a(n-3) +20*a(n-4) -547*a(n-5) -2737*a(n-6) -3239*a(n-7) +4035*a(n-8) +19926*a(n-9) +29650*a(n-10) +11984*a(n-11) -27223*a(n-12) -50924*a(n-13) -45534*a(n-14) -21444*a(n-15) +9879*a(n-16) +39144*a(n-17) +44228*a(n-18) +22820*a(n-19) -5575*a(n-20) -15128*a(n-21) -9730*a(n-22) -6130*a(n-23) -3709*a(n-24) +1233*a(n-25) +3495*a(n-26) +1422*a(n-27) -274*a(n-28) -130*a(n-29) +110*a(n-30) +7*a(n-31) -35*a(n-32) -10*a(n-33)
%e Some solutions for n=6
%e ..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..1..1..0. .0..0..1..0
%e ..1..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..1
%e ..0..1..0..0. .0..0..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..1
%e ..0..1..1..1. .0..1..1..1. .0..0..1..1. .0..1..1..0. .0..1..1..0
%e ..0..1..1..0. .0..1..0..1. .0..1..1..1. .0..1..1..0. .0..1..1..0
%e ..0..1..1..0. .0..0..1..0. .0..0..0..0. .1..1..0..0. .1..1..1..1
%Y Cf. A297762.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 05 2018