login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297667
Number of chordless cycles in the n-Moebius ladder.
0
1, 6, 9, 12, 15, 22, 35, 56, 87, 134, 209, 332, 533, 858, 1381, 2224, 3587, 5794, 9367, 15148, 24499, 39626, 64101, 103704, 167785, 271470, 439233, 710676, 1149879, 1860526, 3010379, 4870880, 7881231, 12752078, 20633273, 33385316, 54018557, 87403842, 141422365, 228826168
OFFSET
1,2
COMMENTS
Extended to a(1)-a(2) using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Moebius Ladder
FORMULA
a(n) = n - 2*cos(n*Pi/3) + Lucas(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 2*a(n-5) + a(n-6).
G.f.: x*(-1 - 2*x + 9*x^2 - 8*x^3 + 3*x^4)/((-1+x)^2 *(x^2+x-1) *(x^2-x+1)).
MATHEMATICA
Table[n - 2 Cos[n Pi/3] + LucasL[n], {n, 20}]
LinearRecurrence[{4, -6, 4, 0, -2, 1}, {1, 6, 9, 12, 15, 22}, 20]
CoefficientList[Series[(-1 - 2 x + 9 x^2 - 8 x^3 + 3 x^4)/((-1 + x)^2 (-1 + 2 x - x^2 + x^4)), {x, 0, 20}], x]
PROG
(PARI) x='x+O('x^23); Vec((-1 - 2*x + 9*x^2 - 8*x^3 + 3*x^4)/((-1 + x)^2* (-1 + 2*x - x^2 + x^4))) \\ Georg Fischer, Apr 03 2019
CROSSREFS
Sequence in context: A315953 A359613 A315954 * A315955 A315956 A343043
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jan 02 2018
EXTENSIONS
Terms a(1), a(2) prepended by Georg Fischer, Apr 03 2019
STATUS
approved