login
A297305
Numbers k such that k^4 can be written as a sum of five positive 4th powers.
1
5, 10, 15, 20, 25, 30, 31, 35, 40, 45, 50, 55, 60, 62, 65, 70, 75, 80, 85, 89, 90, 93, 95, 100, 103, 105, 110, 115, 120, 124, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 178, 180, 185, 186, 190, 195, 200, 205, 206, 210, 215, 217, 220, 225, 230, 233
OFFSET
1,1
COMMENTS
If k is in the sequence, then k*m is in the sequence for every positive integer m.
LINKS
Eric Weisstein's World of Mathematics, Diophantine Equation 4th Powers.
EXAMPLE
5^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 (= 625).
31^4 = 10^4 + 10^4 + 10^4 + 17^4 + 30^4 (= 923521).
89^4 = 10^4 + 35^4 + 52^4 + 60^4 + 80^4 (= 62742241).
103^4 = 4^4 + 15^4 + 50^4 + 50^4 + 100^4 (= 112550881).
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2018
EXTENSIONS
a(43)-a(57) from Jon E. Schoenfield, Mar 17 2018
STATUS
approved