login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296838
Expansion of e.g.f. log(1 + x*tanh(x/2)) (even powers only).
3
0, 1, -4, 48, -1186, 50060, -3226206, 294835184, -36270477034, 5779302944436, -1157856177719830, 284876691727454552, -84442374415240892898, 29680054107768128647388, -12205478262363331593956686, 5805823539844285054558025280, -3163004294186696659107788567386
OFFSET
0,3
LINKS
FORMULA
a(n) = (2*n)! * [x^(2*n)] log(1 + x*tanh(x/2)).
a(n) ~ -(-1)^n * sqrt(Pi) * 2^(2*n + 1) * n^(2*n - 1/2) / (r^(2*n) * exp(2*n)), where r = 1.306542374188806202228727831923118284841279755635... is the root of the equation r * tan(r/2) = 1. - Vaclav Kotesovec, Dec 21 2017
EXAMPLE
log(1 + x*tanh(x/2)) = x^2/2! - 4*x^4/4! + 48*x^6/6! - 1186*x^8/8! + ...
MATHEMATICA
nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Dec 21 2017
STATUS
approved