login
A296643
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1, 2 or 4 neighboring 1s.
7
1, 2, 2, 4, 10, 4, 7, 28, 28, 7, 12, 86, 132, 86, 12, 21, 279, 671, 671, 279, 21, 37, 869, 3444, 5696, 3444, 869, 37, 65, 2728, 17558, 49872, 49872, 17558, 2728, 65, 114, 8596, 89613, 430522, 742601, 430522, 89613, 8596, 114, 200, 27004, 457188, 3713779
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......4.........7..........12............21..............37
...2....10......28........86.........279...........869............2728
...4....28.....132.......671........3444.........17558...........89613
...7....86.....671......5696.......49872........430522.........3713779
..12...279....3444.....49872......742601......10781621.......157255466
..21...869...17558....430522....10781621.....263456105......6468185511
..37..2728...89613...3713779...157255466....6468185511....267838310277
..65..8596..457188..32095222..2296958734..158971670482..11100574753607
.114.27004.2333009.277299810.33523275696.3904685293187.459672982178410
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +6*a(n-3) -6*a(n-4) +6*a(n-5) -5*a(n-6) +3*a(n-7) -a(n-8)
k=3: [order 22]
k=4: [order 74]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..0. .1..1..0..0. .1..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .1..0..1..1. .1..0..1..0. .1..0..0..0. .1..1..0..1
..0..1..1..0. .0..0..0..1. .1..0..0..0. .1..0..0..1. .0..1..0..0
..1..1..1..0. .1..1..1..0. .1..1..1..0. .1..0..1..0. .0..1..1..0
CROSSREFS
Column 1 is A005251(n+2).
Column 2 is A296380.
Sequence in context: A121623 A267347 A296386 * A295040 A295531 A220259
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2017
STATUS
approved