login
Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^5. A graph G is abstract almost-equidistant in R^5 if the complement of G does not contain K_3 and G does not contain K_7 nor K_{3,3,3}.
4

%I #10 Jun 20 2024 08:28:16

%S 1,2,3,7,14,38,106,402,1817,11132,86053,803299,7623096,58770989

%N Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^5. A graph G is abstract almost-equidistant in R^5 if the complement of G does not contain K_3 and G does not contain K_7 nor K_{3,3,3}.

%C A set of points in R^d is called almost equidistant if for any three points, some two are at unit distance.

%H Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, <a href="https://arxiv.org/abs/1706.06375">Almost-equidistant sets</a>, arXiv:1706.06375 [math.MG], 2017.

%H Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, <a href="http://page.math.tu-berlin.de/~scheuch/supplemental/almost_equidistant_sets/">Almost-equidistant sets [supplemental data]</a>, 2017.

%Y Cf. A296414, A296415, A296416, A296418, A006785.

%K nonn,fini,more

%O 1,2

%A _Manfred Scheucher_, Dec 11 2017