login
A296377
Natural numbers y such that 7y^2 = x^2 + x + 1 has a solution in natural numbers.
3
1, 7, 247, 1777, 62737, 451351, 15934951, 114641377, 4047414817, 29118458407, 1028027428567, 7395973794001, 261114919441201, 1878548225217847, 66322161510636487, 477143853231539137, 16845567908782226497, 121192660172585722951, 4278707926669174893751
OFFSET
1,2
COMMENTS
Given explicitly as the denominators of the convergents to the continued fractions
[2,(1,1,1,4)^i,5,(1,1,1,4)^{i-1},1,2] (for n odd and i = (n-1)/2)
and
[2,(1,1,1,4)^i,1,1,2,(1,4,1,1)^i,1] (for n even and i = n/2 - 1).
REFERENCES
E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 02 2022
FORMULA
Recurrence: a(n) = 255*a(n-2) - 255*a(n-4) + a(n-6).
From Colin Barker, Dec 11 2017: (Start)
G.f.: x*(1-x)*(1+8*x+x^2) / ((1-16*x+x^2)*(1+16*x+x^2)).
a(n) = 254*a(n-2) - a(n-4) for n>4.
(End)
EXAMPLE
For n = 3 the pair is (x,y) = (653,247).
PROG
(PARI) Vec(x*(1-x)*(1+8*x+x^2) / ((1-16*x+x^2)*(1+16*x+x^2)) + O(x^30)) \\ Colin Barker, Dec 13 2017
CROSSREFS
Cf. A296376.
Sequence in context: A330517 A086214 A133589 * A223630 A203158 A227414
KEYWORD
nonn,easy
AUTHOR
Jeffrey Shallit, Dec 11 2017
STATUS
approved