login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296187
Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.
1
73, 223, 233, 283, 337, 383, 523, 733, 773, 823, 2333, 2683, 2833, 2857, 3323, 3583, 3673, 3733, 3853, 5333, 6673, 6737, 6883, 7333, 7673, 7727, 7877, 8233, 8563, 8623, 22277, 22283, 22727, 23333, 23833, 25237, 25253, 25633, 26227, 26833, 27583, 27827, 27883, 32257
OFFSET
1,1
COMMENTS
A Yarborough prime is a prime that does not contain digits 0 or 1.
Terms t of A106116 such that A048385(t) is also a term of A106116. - Felix Fröhlich, Feb 14 2018
FORMULA
{A106116(k): A048385(A106116(k)) in A106116}. - Felix Fröhlich, Feb 14 2018
EXAMPLE
a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes.
a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes.
MATHEMATICA
k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 && Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1
a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e)
is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ Felix Fröhlich, Mar 26 2018
CROSSREFS
Cf. A106116 (Yarborough primes), A048385, A052034, A296563 (digits to cubes).
Sequence in context: A089786 A142894 A141909 * A142517 A158711 A140039
KEYWORD
nonn,base,less
AUTHOR
K. D. Bajpai, Feb 14 2018
STATUS
approved