login
A295847
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 1 or 2 king-move neighboring 1s.
8
1, 2, 2, 4, 11, 4, 7, 29, 29, 7, 12, 80, 104, 80, 12, 21, 261, 467, 467, 261, 21, 37, 789, 2197, 3472, 2197, 789, 37, 65, 2354, 9645, 26544, 26544, 9645, 2354, 65, 114, 7199, 43335, 190943, 333366, 190943, 43335, 7199, 114, 200, 21889, 195508, 1406191
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4........7.........12...........21.............37
...2....11.....29.......80........261..........789...........2354
...4....29....104......467.......2197.........9645..........43335
...7....80....467.....3472......26544.......190943........1406191
..12...261...2197....26544.....333366......3804661.......45214991
..21...789...9645...190943....3804661.....68406015.....1296880337
..37..2354..43335..1406191...45214991...1296880337....39611268638
..65..7199.195508.10368395..538013975..24467737897..1200659717965
.114.21889.876170.76065766.6343699611.457692634063.36061398110075
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +6*a(n-3) -8*a(n-4)
k=3: [order 9]
k=4: [order 16]
k=5: [order 35]
k=6: [order 73]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0. .1..1..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0
..1..0..1..1. .0..0..0..0. .1..0..0..1. .1..0..0..0. .1..0..0..1
..1..0..1..0. .1..1..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..0
..1..0..0..0. .0..0..0..1. .0..0..1..0. .1..0..1..1. .0..1..0..0
CROSSREFS
Column 1 is A005251(n+2).
Sequence in context: A196856 A196707 A196950 * A296739 A218823 A296599
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2017
STATUS
approved