login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295662
Number of odd exponents larger than one in the canonical prime factorization of n.
10
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,216
FORMULA
Additive with a(p) = 0, a(p^e) = A000035(e) if e > 1.
a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A000035(A067029(n)) + a(A028234(n)).
a(n) = A162642(n) - A056169(n).
a(n) <= A295659(n).
a(n) = 0 iff A295663(n) = 0, and when A295663(n) > 0, a(n) <= A295663(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2*(p+1)) = 0.122017493776862257491... . - Amiram Eldar, Sep 28 2023
EXAMPLE
For n = 24 = 2^3 * 3^1 there are two odd exponents, but only the other is larger than 1, thus a(24) = 1.
For n = 216 = 2^3 * 3^3 there are two odd exponents larger than 1, thus a(216) = 2.
MATHEMATICA
Array[Count[FactorInteger[#][[All, -1]], _?(And[OddQ@ #, # > 1] &)] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A295662 n) (if (= 1 n) 0 (+ (if (= 1 (A067029 n)) 0 (A000035 (A067029 n))) (A295662 (A028234 n)))))
(PARI) a(n) = vecsum(apply(x -> x%2 - (x==1), factor(n)[, 2])); \\ Amiram Eldar, Sep 28 2023
CROSSREFS
Cf. A295661 (positions of nonzero terms).
Sequence in context: A359472 A295883 A366124 * A367512 A187946 A330549
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Nov 28 2017
STATUS
approved