login
A295166
Chromatic invariant of the n-cocktail party graph.
1
2, 1, 11, 362, 21234, 1965624, 264398280, 48773612880, 11824686110160, 3646938237505920, 1394586705296776320, 647624841502298284800, 359025601255648673068800, 234214938700483636606233600, 177617896085186117264114611200, 154944426571409730022474894387200
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Cocktail Party Graph
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)*(-1)^(n+k)*(n+k-2)! for n > 1. - Andrew Howroyd, Apr 22 2018
MATHEMATICA
Join[{2}, Table[Sum[Binomial[n, k] (-1)^(k + n) (n + k - 2)!, {k, 0, n}], {n, 2, 20}]] (* Eric W. Weisstein, Apr 23 2018 *)
seq = Join[{2}, Table[-Gamma[n - 1] HypergeometricU[n - 1, 2 n, -1], {n, 2, 20}]] (* Eric W. Weisstein, Apr 23 2018 *)
PROG
(PARI) a(n)={if(n<2, [2][n], sum(k=0, n, binomial(n, k)*(-1)^(n+k)*(n+k-2)!))} \\ Andrew Howroyd, Apr 22 2018
CROSSREFS
Sequence in context: A322513 A082272 A107049 * A345050 A285649 A074956
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 16 2017
EXTENSIONS
a(16) from Andrew Howroyd, Apr 22 2018
STATUS
approved