login
A294995
Numbers n such that sopfr(n) = sopfr(n-1) + sopfr(n-2), where sopfr is the sum of prime factors of n with multiplicity (A001414).
7
23, 610, 1162, 1243, 1651, 7385, 13066, 37129, 38123, 41194, 41361, 48511, 59452, 72179, 83151, 87375, 98877, 103528, 126497, 138190, 141037, 148657, 157994, 162410, 175077, 262788, 296482, 299398, 351226, 354321, 418134, 425099, 452130, 465254, 470494
OFFSET
1,1
LINKS
EXAMPLE
610 is in the sequence since sopfr(608) = 29, sopfr(609) = 39 and sopfr(610) = 68 = 39 + 29.
MATHEMATICA
f[n_]:=Plus @@ Times @@@ FactorInteger@ n; Select[Range[10^5], f[#]==f[#-1]+f[#-2] &]
PROG
(PARI) sopfr(n, f=factor(n))=f[, 1]~*f[, 2]
list(lim)=my(v=List(), a=0, b=2, c); forfactored(k=3, lim\1, c=sopfr(k[2]); if(c==a+b, listput(v, k[1])); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, Nov 12 2017
CROSSREFS
Sequence in context: A106538 A203102 A362482 * A142750 A202667 A129991
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 12 2017
STATUS
approved