login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294271
Sum of the fourth powers of the parts in the partitions of n into two parts.
1
0, 2, 17, 114, 354, 1060, 2275, 4932, 8772, 15958, 25333, 41270, 60710, 91672, 127687, 182408, 243848, 333930, 432345, 572666, 722666, 931788, 1151403, 1451980, 1763020, 2182206, 2610621, 3180478, 3756718, 4514624, 5273999, 6263056, 7246096, 8515538, 9768353
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..floor(n/2)} i^4 + (n-i)^4.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 15*x + 87*x^2 + 165*x^3 + 241*x^4 + 165*x^5 + 77*x^6 + 15*x^7 + x^8) / ((1 - x)^6*(1 + x)^5).
a(n) = (1/480)*(n*(-16 + 160*n^2 + 15*(-15 + (-1)^n)*n^3 + 96*n^4)).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>11.
(End)
MATHEMATICA
Table[Sum[i^4 + (n - i)^4, {i, Floor[n/2]}], {n, 60}]
Table[Total[Flatten[IntegerPartitions[n, {2}]]^4], {n, 40}] (* Harvey P. Dale, Mar 01 2019 *)
PROG
(PARI) concat(0, Vec(x^2*(2 + 15*x + 87*x^2 + 165*x^3 + 241*x^4 + 165*x^5 + 77*x^6 + 15*x^7 + x^8) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Nov 20 2017
(PARI) a(n) = sum(i=1, n\2, i^4 + (n-i)^4); \\ Michel Marcus, Nov 20 2017
CROSSREFS
Sequence in context: A213785 A198158 A203247 * A203123 A198043 A037747
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 26 2017
STATUS
approved