OFFSET
1,5
COMMENTS
The size of the set of numbers j^6 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence.
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..10132
Richard J. Mathar, Size of the Set of Residues of Integer Powers of Fixed Exponent, 2017.
FORMULA
Conjecture: a(2^e) = 1 for e <= 3; a(2^e) = 2^(e-3) for e >= 3; a(3^e) = 1 for e <= 2; a(3^e) = 3^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1)/2 for p == 5 (mod 6); a(p^e) = (p-1)*p^(e-1)/6 for p == 1 (mod 6). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319100(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019
MAPLE
MATHEMATICA
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]];
Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
R. J. Mathar, Oct 10 2017
STATUS
approved