login
A293483
The number of 6th powers in the multiplicative group modulo n.
5
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 2, 1, 2, 2, 8, 1, 3, 2, 1, 5, 11, 1, 10, 2, 3, 1, 14, 2, 5, 4, 5, 8, 2, 1, 6, 3, 2, 2, 20, 1, 7, 5, 2, 11, 23, 2, 7, 10, 8, 2, 26, 3, 10, 1, 3, 14, 29, 2, 10, 5, 1, 8, 4, 5, 11, 8, 11, 2, 35, 1, 12, 6, 10, 3, 5, 2, 13, 4, 9, 20
OFFSET
1,5
COMMENTS
The size of the set of numbers j^6 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence.
FORMULA
Conjecture: a(2^e) = 1 for e <= 3; a(2^e) = 2^(e-3) for e >= 3; a(3^e) = 1 for e <= 2; a(3^e) = 3^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1)/2 for p == 5 (mod 6); a(p^e) = (p-1)*p^(e-1)/6 for p == 1 (mod 6). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319100(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019
MAPLE
A293483 := proc(n)
local r, j;
r := {} ;
for j from 1 to n do
if igcd(j, n)= 1 then
r := r union { modp(j &^ 6, n) } ;
end if;
end do:
nops(r) ;
end proc:
seq(A293483(n), n=1..120) ;
MATHEMATICA
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]];
Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
CROSSREFS
The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), this sequence (k=6), A293484 (k=7), A293485 (k=8).
Sequence in context: A106498 A093466 A257463 * A125761 A154950 A260089
KEYWORD
nonn,mult
AUTHOR
R. J. Mathar, Oct 10 2017
STATUS
approved