login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293478
Composite numbers k = concat(x,LSD(k)) such that k' = x', where k' is the arithmetic derivative of k.
0
17251, 109999, 112639, 130733, 269119, 318293, 390319, 463669, 1319519, 1726541, 1841839, 2010719, 2013187, 2311919, 5780221, 6493519, 7355839, 7533599, 10668773, 12652639, 14650639, 14951999, 21098459, 21500071, 25167845, 31008319, 35807999, 38687599, 39458719
OFFSET
1,1
EXAMPLE
17251' = 1725' = 1340, so 17251 is a term.
109999' = 10999' = 664, so 109999 is a term.
MAPLE
with(numtheory): P:=proc(q) local a, k, n, p, x, y; for n from 2 to q do
if not isprime(n) then x:=trunc(n/10); a:=x*add(op(2, p)/op(1, p), p=ifactors(x)[2]);
if n*add(op(2, p)/op(1, p), p=ifactors(n)[2])=a then print(n); fi; fi; od; end: P(10^6);
CROSSREFS
Cf. A010879 (LSD), A003415 (arithmetic derivative).
Sequence in context: A233993 A043621 A334310 * A076774 A236447 A094413
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Oct 10 2017
STATUS
approved