OFFSET
1,3
COMMENTS
Conjecture: For all n >= 1, for all k >= 2, A(n, k) = A293311(k, n); i.e., A(n, k) = number of magic labelings of the graph LOOP X C_k with magic sum n - 1.
FORMULA
Let S(0, x) = 1, S(1, x) = x, S(k, x) = x*S(k - 1, x) - S(k - 2, x) (the S-polynomials of Wolfdieter Lang) and c(n, j) = 2*(-1)^(j - 1)*cos(j*Pi/(2*n + 1)). Then A(n, k) = Sum_{j=1..n} S(n - 1, c(n, j))^(k), n >= 1, k >= 0.
EXAMPLE
Array begins:
. 1 1 1 1 1 1 1 1 1 1 1
. 2 1 3 4 7 11 18 29 47 76 123
. 3 2 6 11 26 57 129 289 650 1460 3281
. 4 2 10 23 70 197 571 1640 4726 13604 39175
. 5 3 15 42 155 533 1884 6604 23219 81555 286555
. 6 3 21 69 301 1223 5103 21122 87677 363606 1508401
. 7 4 28 106 532 2494 11998 57271 274132 1310974 6271378
. 8 4 36 154 876 4654 25362 137155 743724 4029310 21836366
. 9 5 45 215 1365 8105 49347 298184 1806597 10936124 66220705
. 10 5 55 290 2035 13355 89848 599954 4016683 26868719 179784715
. 11 6 66 381 2926 21031 154935 1132942 8306078 60843972 445824731
. ...
MATHEMATICA
s[0, x_] := 1; s[1, x_] := x; s[k_, x_] := x*s[k - 1, x] - s[k - 2, x]; c[n_, j_] := 2 (-1)^(j - 1) Cos[j*Pi/(2 n + 1)]; a[n_, k_] := Round[Sum[s[n - 1, c[n, j]]^(k), {j, n}]];
(* Array: *)
Grid[Table[a[n, k], {n, 11}, {k, 0, 10}]]
(* Array antidiagonals flattened (gives this sequence): *)
Flatten[Table[a[n, k - n], {k, 11}, {n, k}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Oct 10 2017
STATUS
approved