login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293013
a(n) = n! * [x^n] exp(x/(1 - x)^n).
4
1, 1, 5, 55, 961, 24101, 818821, 36053515, 1984670465, 132825475081, 10583425959301, 988018789759871, 106673677280748865, 13172700275176482925, 1842428769970603518341, 289406832942160060794451, 50677793314733587473331201, 9829328870566195730521433105
OFFSET
0,3
COMMENTS
Conjecture: a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. - Peter Bala, Mar 12 2023
LINKS
FORMULA
a(n) = A293012(n,n).
MATHEMATICA
Table[n! SeriesCoefficient[Exp[x/(1 - x)^n] , {x, 0, n}], {n, 0, 17}]
CROSSREFS
Main diagonal of A293012. Cf. A361281.
Sequence in context: A141357 A357394 A093352 * A195513 A172493 A155807
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Sep 28 2017
STATUS
approved