Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 23 2019 00:50:43
%S 1,2,6,4,32,48,16,8,288,64,128,8196,256,2048,16896,278528,2097664,
%T 589824,4096,8192,8388609,16384,536870944,268435488,65536,32768,
%U 268959744,17179869440,524288,4294967298,1048576,8589934594,8589934596
%N a(n) is the smallest positive k such that f(k) = n*g(k) where f = A007953 and g = A000120, or 0 if no such k exists.
%C Conjecture: a(n) > 0 for all n >= 1.
%C Numbers n such that a(n) is not a power of 2 are 3, 6, 9, 12, 15, 16, 17, 18, ...
%C a(21) = 8388609 = 2^23 + 1 is the second odd term of this sequence after a(1) = 1.
%C Smallest n such that a(n + 1) = a(n) + 2 is 32 and a(32) = 2*(2^32 + 1).
%C For n <= 170, A000120(a(n)) <= 2. - _Robert Israel_, Nov 22 2019
%H Robert Israel, <a href="/A293011/b293011.txt">Table of n, a(n) for n = 1..170</a>
%H Robert Israel, <a href="/A293011/a293011.png">Color-coded logarithmic plot</a>
%e a(9) = 288 = 2^8 + 2^5 because A007953(288) = 2 + 8 + 8 = 18, 18 / 2 = 9 and 288 is the least number with this property.
%p # This code returns a(n) if A000120(a(n)) <= 3 and it can prove that no
%p # smaller number with A000120 >= 4 can have A007953 large enough. If it
%p # can't prove that, it returns FAIL.
%p sdd:= n -> convert(convert(n,base,10),`+`):
%p g:= proc(n) local found, k1, k2, k3, x, y, m,bd;
%p found:= false;
%p for k1 from 1 while not found do
%p for k2 from 0 to k1-1 do
%p x:= 2^k1 + 2^k2;
%p if sdd(x) = 2*n then found:= true; break fi
%p od od;
%p for k1 from 0 to ilog2(x) do
%p if sdd(2^k1) = n then x:= 2^k1; break fi
%p od;
%p m:= ilog10(x);
%p bd:= floor(x/10^m)+9*m;
%p if bd <= 3*n then return x fi;
%p found:= false;
%p for k1 from 2 to ilog2(x) while not found do
%p for k2 from 1 to k1-1 while not found do
%p for k3 from 0 to k2-1 do
%p y:= 2^k1 + 2^k2 + 2^k3;
%p if y > x or sdd(y) = 3*n then found:= true; break fi;
%p od od od;
%p if found then x:= min(x,y) fi;
%p bd:= floor(x/10^m)+9*m;
%p if bd <= 4*n then x else FAIL fi;
%p end proc:
%p map(g, [$1..50]); # _Robert Israel_, Nov 22 2019
%o (PARI) a(n) = {my(k=1); while ((hammingweight(k))*n != sumdigits(k), k++); k; }
%Y Cf. A000120, A001370, A007953.
%K nonn,base,look
%O 1,2
%A _Altug Alkan_, Sep 28 2017