login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293008
Primes of the form 2^q * 3^r * 7^s + 1.
2
2, 3, 5, 7, 13, 17, 19, 29, 37, 43, 73, 97, 109, 113, 127, 163, 193, 197, 257, 337, 379, 433, 449, 487, 577, 673, 757, 769, 883, 1009, 1153, 1297, 1373, 1459, 2017, 2269, 2593, 2647, 2689, 2917, 3137, 3457, 3529, 3889, 7057, 8233, 10369, 10753, 12097, 12289, 14407, 15877, 17497, 18433
OFFSET
1,1
COMMENTS
Fermat prime exponents q occur in the case when q = 0, 1, 2, 4, 8, 16.
EXAMPLE
With n = 1, a(1) = 2^0 * 3^0 * 7^0 + 1 = 2.
With n = 5, a(5) = 2^2 * 3^1 * 7^0 + 1 = 13.
list of (q, r, s): (0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (4, 0, 0), (1, 2, 0), (2, 0, 1), (2, 2, 0), (1, 1, 1), ...
MATHEMATICA
With[{n = 19000}, Union@ Select[Flatten@ Table[2^p1*3^p2*7^p4 + 1, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p4, 0, Log[7, n/(2^p1*3^p2)]}], PrimeQ]] (* Michael De Vlieger, Sep 30 2017 *)
PROG
(GAP)
K:=10^7+1;; # to get all terms <= K.
A:=Filtered([1..K], IsPrime);; I:=[3, 7];;
B:=List(A, i->Elements(Factors(i-1)));;
C:=List([0..Length(I)], j->List(Combinations(I, j), i->Concatenation([2], i)));;
A293008:=Concatenation([2], List(Set(Flat(List([1..Length(C)], i->List([1..Length(C[i])], j->Positions(B, C[i][j]))))), i->A[i]));
CROSSREFS
Cf. A002200 (Primes of the form 2^q * 3^r * 5^s + 1).
Sequence in context: A077040 A153503 A049587 * A038903 A136003 A215799
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Sep 28 2017
STATUS
approved