login
A292051
Wiener index of the n X n black bishop graph.
0
0, 1, 14, 42, 124, 251, 506, 852, 1432, 2165, 3270, 4606, 6484, 8687, 11634, 15016, 19376, 24297, 30462, 37330, 45740, 55011, 66154, 78332, 92744, 108381, 126646, 146342, 169092, 193495, 221410, 251216, 285024, 320977, 361454, 404346, 452316, 502987, 559322, 618660
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Black Bishop Graph
Eric Weisstein's World of Mathematics, Wiener Index
FORMULA
a(n) = (3 - 10*n + 6*n^2 - 8*n^3 + 6*n^4 - 3*(-1)^n*(1 - 2*n + 2*n^2))/24.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
G.f.: x^2*(-1 - 12*x - 12*x^2 - 18*x^3 - 3*x^4 - 2*x^5)/((-1 + x)^5*(1 + x)^3).
MATHEMATICA
Table[(3 - 10 n + 6 n^2 - 8 n^3 + 6 n^4 - 3 (-1)^n (1 - 2 n + 2 n^2))/24, {n, 20}]
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 1, 14, 42, 124, 251, 506, 852}, 20]
CoefficientList[Series[x (-1 - 12 x - 12 x^2 - 18 x^3 - 3 x^4 - 2 x^5)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A005587 A244101 A212514 * A242897 A120714 A041378
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 08 2017
STATUS
approved