login
A292041
a(n) = floor(c^n) where c = (2^(1/3)-1)^(-2) = 14.801887...(n > 0).
1
14, 219, 3243, 48002, 710534, 10517258, 155675283, 2304288003, 34107811455, 504859983098, 7472880600122, 110612736864003, 1637277271142775, 24234793737149739, 358720686980681762, 5309743200769920002, 78594220744343904494, 1163342802249829489179
OFFSET
1,1
COMMENTS
All the numbers in this sequence are composites. The sequence was discovered by M. N. Huxley and published in the paper by Baker and Harman.
Each term == 2 or 3 (mod 6). - Robert Israel, Sep 08 2017
LINKS
Roger C. Baker and Glyn Harman, Primes of the form [c^p], Mathematische Zeitschrift, Vol. 221, No. 1 (1996), pp. 73-81.
Eric Weisstein's World of Mathematics, Primefree Sequence.
MAPLE
Digits:= 1000:
c:= (2^(1/3)-1)^(-2):
seq(floor(c^n), n=1..50); # Robert Israel, Sep 08 2017
MATHEMATICA
c = (2^(1/3) - 1)^(-2); Table[Floor[c^n], {n, 1, 10}]
PROG
(PARI) a(n) = floor(1/(2^(1/3)-1)^(2*n)); \\ Altug Alkan, Sep 08 2017
CROSSREFS
Sequence in context: A353146 A113894 A225315 * A319114 A145269 A221582
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 08 2017
STATUS
approved